Protein Digestion

Proteins found in nature vary greatly in size from 5 kDa to greater than 400 kDa. While it is possible to study intact proteins by mass spectrometry (MS) and the modifications present on these proteins, the most common proteomic approaches currently utilize digestion with site-specific proteases to generate smaller fragments, peptides, as a first digestion with site-specific proteases to generate smaller fragments, peptides, as a first step in the analyses (protein digestion). Peptides are easier to characterize and can be separated using reverse phase supports by high performance liquid chromatography (HPLC) using a C18 column. HPLC-coupled to a Tandem MS is used to obtain fragmentation data of individual peptides. This digestion of proteins into smaller pieces is typically carried out by proteases such as trypsin (NEB #P8101) and Endoproteinases GluC (NEB #P8100) and AspN (NEB #P8104).

Choose Type:

FAQs for Protein Digestion
Protocols for Protein Digestion
    Tools & Resources


  • Glycoproteomics Brochure

    The Glycoproteomics brochure provides information on the suite of endo- and exoglycosidases, and deglycosylation enzymes offered by NEB.

  • Glycoproteomics Technical Guide

    Find in-depth information, including protocols, technical tips, frequently asked questions and application notes, utilizing NEB’s suite of endo- and exoglycosidases.

Legal Information
This product is covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc (NEB).

While NEB develops and validates its products for various applications, the use of this product may require the buyer to obtain additional third party intellectual property rights for certain applications.

For more information about commercial rights, please contact NEB's Global Business Development team at

This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.