Cell Imaging Banner

Cellular Analysis

SNAP- and CLIP-tag protein labeling systems enable the specific, covalent attachment of virtually any molecule to a protein of interest. There are two steps to using this system: cloning and expression of the protein of interest as a SNAP-tag® fusion, and labeling of the fusion with the SNAP-tag substrate of choice. The SNAP-tag is a small protein based on human O6-alkylguanine-DNA-alkyltransferase (hAGT), a DNA repair protein. SNAP-tag substrates are dyes, fluorophores, biotin, or beads conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. In the labeling reaction, the substituted benzyl group of the substrate is covalently attached to the SNAP-tag. CLIP-tag™ is a modified version of SNAP-tag, engineered to react with benzylcytosine rather than benzylguanine derivatives. When used in conjunction with SNAP-tag, CLIP-tag enables the orthogonal and complementary labeling of two proteins simultaneously in the same cells. 

SNAP-tag® is a registered trademark of New England Biolabs, Inc.
CLIP-tag™ is a trademark of New England Biolabs, Inc.

Cellular Analysis includes these subcategories:

Starter Kits
SNAP-tag® Substrates
CLIP-tag™ Substrates
ACP/MCP-tag Substrates
SNAP-Capture
Blocking Agents
Cloning Vectors & Control Plasmids
Synthases
Biotin/Vista Labels
Building Blocks

FAQs for Cellular Analysis

    Publications related to Cellular Analysis

  1. Hoskins, A. et al. 2011. Ordered and dynamic assembly of single spliceoseoms Science . 331 , PubMedID: 21393538, DOI:
  2. Eckhardt, M. et al. 2011. A SNAP-tagged detivative of HIV-1 - A versatile tool to study virus-cell interactions PLoS One . , PubMedID: 21799764, DOI: 10.137/journal. P One .0022007
  3. Damoiseaux, R. et al 2002. Towards the generation of artificial O6-alkylguanine-DNA alkyltransferases: in vitro selection of antibodies with reactive cysteine residues ChemBioChem . 3, PubMedID: 12325014, DOI:
  4. Keppler A. et al. 2003. A general method for the covalent labeling of fusion proteins with small molecules in vivo Nature Biotechnology . 21, PubMedID: , DOI:
  5. Gendreizig, S. et al. 2003. Induced protein dimerizaton in vivo through covalent labeling JACS . 125, PubMedID: 14653715, DOI:
  6. Gendreizig S. et al. 2003. Covalent labeling of fusion proteins with chemical probes in living cells Chimia . 57, PubMedID: , DOI:
  7. Juillerat A. et al. 2003. Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo Chem. Biol.  . 10, PubMedID: , DOI:
  8. Keppler A. et al. 2004. Labeling of fusion proteins with synthetic fluorophores in live cells PNAS . 101, PubMedID: , DOI:
  9. Keppler A. et al. 2004. Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with small molecules in vitro and in vivo Methods . 32, PubMedID: 15003606, DOI:
  10. Kindermann M. et al. 2004. Synthesis and characterization of bifunctional probes for the specific labeling of fusion proteins Bioorg. Med. Chem. Lett. . 14, PubMedID: , DOI:
  11. Gronemeyer T. et al. 2006. Adding value to fusion proteins through covalent labeling Curr. Opin. Biotechn. . 16 , PubMedID: 15967656, DOI:
  12. Gronemeyer T. et al. 2006. Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling Prot. Eng. Des. Sel. . 19, PubMedID: 12725859, DOI:
  13. Keppler A. et al. 2006. Fluorophores for live cell imaging of AGT fusion proteins across the visible spectrum BioTechniques . 41, PubMedID: 16925018, DOI:
  14. Krayl M. et al. 2006. Fluorescence-mediated analysis of mitochondrial preprotein import in vitro Anal. Biochem.  . 335, PubMedID: 16750157, DOI:
  15. Tirat A. et al. 2006. Evaluation of two novel tag-based labeling technologies for site-specific modification of proteins Int. J. Biol. Macromol.. 39, PubMedID: 16503347, DOI:
  16. Heinis C. et al. 2006. Evolving the substrate specificity of O6 alkylguanine DNA alkyltransferase through loop insertion for applications in molecular imaging ACS Chem Biol. . 1, PubMedID: 17168553, DOI:
  17. Johnsson N. et al. 2005. Protein chemistry on the surface of living cells Chembiochem. . 6 , PubMedID: 15558647, DOI:
  18. Regoes A. et al. 2005. SNAP-tag mediated live cell labeling as an alternative to GFP in anaerobic organisms BioTechniques . 39, PubMedID: , DOI:
  19. Juillerat A. et al. 2005. Engineering substrate specificity of O6-alkylguanine-DNA alkyltransferase for specific protein labeling in living cells ChemBioChem . 6, PubMedID: 15934048, DOI:
  20. Srikun, D. et al. 2010. Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-tag protein labeling  J. Am. Chem. Soc. . 132 , PubMedID: 20201528, DOI:
  21. Maurel D. et al. 2010. Photoactivatable and photoconvertible fluorescent probes for protein labeling ACS Chem. Biol. Asap . , PubMedID: 20218675, DOI:
  22. Alvarez-Curto J. et al. 2010. Ligand regulation of the quaternary organization of cell surface M3 muscarinic acetylcholine receptors analyzed by fluorescence resonance energy transfer (FRET) imaging and homogenous time-resolved FRET J. Biol. Chem. . 285 , PubMedID: 20489201, DOI:
  23. Ciruela F. et al. 2010. Lighting up multiprotein complexes: lessons from GPCR oligomerization Trends Biotechnol . 28, PubMedID: 20542584, DOI:
  24. Campos, C. et al. 2010. Labeling cell structures and tracking cell lineage in zebrafish using SNAP-Tag Dev. Dynamics . 240 , PubMedID: 21360787, DOI:
  25. Kamiya M. and Johnsson K. 2010. Localizable and Highly Sensitive Calcium Indicator Based on a BODIPY Fluorophore Anal. Chem. . 82 , PubMedID: 20590099, DOI:
  26. Rhee S. G. et al. 2010. Methods for detection and measurement of hydrogen peroxide inside and outside of cells Mol. Cells . 29 , PubMedID: 20526816, DOI:
  27. Dellagiacoma, C. et al. 2010. Targeted photoswitchable probe for nanoscopy of biological structures ChemBioChem . , PubMedID: 20540058, DOI: 10.1002/Cbic.201000189
  28. Geissbuehler M. et al. 2010. Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell Biophys. J. . 98 , PubMedID: 22259112, DOI:
  29. Hein B. et al. 2010. Stimulated emission depletion nanoscopy of living cells using SNAP-Tag fusion proteins Biophys. J.  . 98 , PubMedID: 20074516, DOI:
  30. Kampmeier, F. et al. 2010. Rapid optical imaging of EGF receptor expression with a single-chain antibody SNAP-tag fusion protein Eur. J. Med. Mol. Imaging . , PubMedID: 20449589, DOI: 10.007/S00259-010-1482-5
  31. Ruggiu A. A. et al. 2010. Fura-2FF-based calcium indicator for protein labeling Org. Biomol. Chem. . 8 , PubMedID: 20556282, DOI:
  32. Nicolle O. et al. 2010. Development of SNAP-tag-mediated live cell labeling as an alternative to GFP in Porphyromonas gingivalis FEMS Immunol. Med. Microbiol.  . 59 , PubMedID: 20482622, DOI:
  33. Mottram L. F. et al. 2007. A Concise Synthesis of the Pennsylvania green fluorophore and labeling of intracellular targets with O6-Benzylguanine Derivatives  Org. Lett. . 9, PubMedID: 17705395, DOI:
  34. Jansen L. et al 2007. Propagation of centromeric chromatin requires exit from mitosis  J. of Cell Bio. . 176, PubMedID: 17339380, DOI:
  35. Lemercier, G. et al. 2007. Inducing and sensing protein-protein interactions in living cells by selective cross-linking Angew Chem. Int. Ed . , PubMedID: 17465435, DOI:
  36. Böhme. et al. 2007. Tracking of human Y receptors in living cells- A fluorescence approach Peptides. 28, PubMedID: 17207557, DOI:
  37. Johnsson N. and Johnsson K. 2007. Chemical tools for biomolecular imaging ACS Chem. Biol. . 2 , PubMedID: 17243781, DOI:
  38. Stenoien D. L. et al. 2007. Cellular trafficking of phospholamban and formation of functional sarcoplasmic reticulum during myocyte differentiation Am. J. Physiol. Cell Physiol.  . 292 , PubMedID: 17287364, DOI:
  39. O'Hare H.M. et al. 2007. Chemical probes shed light on protein function Curr. Opin. Struct. Biol. . 17 , PubMedID: 17851069, DOI:
  40. Stein, V. et al. 2007. A covalent chemical genotype-phenotype linkage for in vitro protein evolution ChemBioChem. . 8, PubMedID: 17948318, DOI:
  41. Pick H. et al. 2007. Distribution plasticity of the human estrogen receptor alpha in live cells: distinct imaging of consecutively expressed receptors J. Mol. Biol. . 14, PubMedID: 17991486, DOI:
  42. Hill Z. B. 2009. A chemical genetic method for generating bivalent inhibitors of protein kinases J. Am. Chem. Soc. . 131, PubMedID: 19391594, DOI:
  43. Tivari R. and Parang K. 2009. Protein conjugates of SH3-domain ligands and ATP- competitive inhibitors as bivalent inhibitors of protein kinases ChemBioChem. . 10, PubMedID: 19731277, DOI:
  44. Brun M.A. et al. 2009. Semisynthetic fluorescent sensor proteins based on self-labeling protein tags J. Am. Chem. Soc. . 131 , PubMedID: 19348459, DOI:
  45. Bannwarth et. al. 2009. Indo-1 Derivatives for local calcium sensing JACS Chemical Biology . 4 , PubMedID: 19193035, DOI:
  46. Milenkovic L. et al. 2009. Lateral transport of smoothened from the plasma membrane to the membrane of the cilium J. Cell Biol. . 187 , PubMedID: 19193035, DOI:
  47. Böhme I and Beck-Sickinger A. G. 2009. Illuminating the life of GPCRs Cell Commun. Signal . 7 , PubMedID: 19602276, DOI:
  48. Farr G. A. et al. 2009. Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells J. Cell Biol. . 186 , PubMedID: 19620635, DOI:
  49. Johnsson K. 2009. Visualizing biochemical activities in living cells Nat Chem Biol . 5 , PubMedID: 19148167, DOI:
  50. Uano Y. and Matsuzaki K. 2009. Tag-probe labeling methods for live-cell imaging of membrane proteins Biochim. Biophys. Acta. . 1788 , PubMedID: 19646952, DOI:
  51. Kapmeier F. et al. 2009. Site-Specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase Bioconjug Chem. . 23-Apr , PubMedID: 19388673, DOI:
  52. Stein V. and Hollfeder F. 2009. An efficient method to assemble linear DNA templates for in vitro screening and selection systems Nuc. Acids Res . 37, PubMedID: 19617373, DOI:
  53. Donovan C. et al. 2009. Characterization and subcellular localization of bacterial flotillin homologue Microbiology . 155 , PubMedID: 19383680, DOI:
  54. Sletten E. and Bertozzi C. 2009. Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality Angew. Chem. Int. Ed. . 48 , PubMedID: 19714693, DOI:
  55. Carroll C.W. et al. 2009. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N Nat. Cell Biol. . 11 , PubMedID: 19543270, DOI:
  56. Foltz D.R. et al. 2009. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP Cell . 137 , PubMedID: 19410544, DOI:
  57. Ahier A. et al. 2009. A new family of receptor tyrosine kinases with a venus flytrap binding domain in insects and other invertebrates activated by aminoacids PLoS One . 4, PubMedID: 19461966, DOI:
  58. Cornish, V. W. 2009. Fluorescence in living systems: applications in chemical biology Wiley Encyc. of Chem. Biol. . 2 , PubMedID: , DOI:
  59. Chattopadhaya S. et al. 2009. Expanding the chemical Biologist's tool kit: chemical labelling strategies and its applications Curr. Med. Chem.  . 16 , PubMedID: 19903152, DOI:
  60. Degorce F. et al. 2009. HTRF: A technology tailored for drug discovery - a review of theoretical aspects and recent applications Curr. Chem. Genomics .  3 , PubMedID: 20161833, DOI:
  61. Samoshkin A. et al. 2009. Human condensin function is essential for centromeric chromatin assembly and proper sister kinetochore orientation PLoS One . 4 , PubMedID: 19714251, DOI:
  62. Keppler A. et al. 2009. Chromophore-assisted laser inactivation of α- and γ-tubulin SNAP-tag fusion proteins inside living cells ACS Chem. Biol. . 4 , PubMedID: 19191588, DOI:
  63. McMurray, M.A. and Thorner, J. 2008. Septin stability and recycling during dynamic structural transitions in cell division and development Current Biology . 18 , PubMedID: 18701287, DOI:
  64. Lin M.Z. and Wang L. 2008. Selective labeling of proteins with chemical probes in living cells Physiology . 23 , PubMedID: 18556466, DOI:
  65. Mao S. et al. 2008. Optical lock-in detection of FRET using synthetic and genetically encoded optical switches Biophys. J. . 94, PubMedID: 18281383, DOI:
  66. Tomat, E. et al. 2008. Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells J. Am. Chem. Soc. . 130 , PubMedID: 18973293, DOI:
  67. Johnson K. 2008. SNAP-tag Technologies: Novel tools to study protein function NEB Expressions . 3.3 , PubMedID: , DOI:
  68. Adams D. G. et al. 2008. Cellular Ser/Thr-kinase assays using generic peptide substrates Curr. Chem. Gen. . 1 , PubMedID: 20161828, DOI:
  69. Banala J. et al. 2008. Caged substrates for protein labeling and immobilization Chembiochem . 4, PubMedID: 18033718, DOI:
  70. Maurel D. et al. 2008. Cell-surface protein-protein interaction analysis with time-resolved FRET and SNAP-tag technologies: application to GPCR oligomerization Nature Methods . 5, PubMedID: 18488035, DOI:
  71. Chidley C. et al. 2008. A designed protein for the specific and covalent heteroconjugation of biomolecules Bioconj. Chem. . 19 , PubMedID: 18754573, DOI:
  72. Gautier A. et al. 2008. AGT/SNAP-Tag: A versatile tag for covalent protein labeling from probes and tags to study biomolecular function Ed. Edited by Miller, L. W. . , PubMedID: , DOI:
  73. Erhardt, S. et al. 2008. Genome-wide analysis reveals a cell cycle-dependent mechanism controling centromere propagation J. Cell Biol.. 183 , PubMedID: 19047461, DOI:
  74. Howland S.W. et al. 2008. Inducing efficient cross-priming using antigen-coated yeast particles J. Immunother.. 31 , PubMedID: 18600183, DOI:
  75. Southwell, A.L. et al. 2008. Intrabodies binding the proline-rich domains of mutant huntingtin increase its turnover and reduce neurotoxicity J. Neurosci. . 28, PubMedID: 18768695, DOI:
  76. Fururta, K. et al. 2008. Diffusion and directed movement: in vitro motile properties of fission yeast kinesin-14 Plk1 J. Biol. Chem.  . 283 , PubMedID: 18984586, DOI:
  77. Kindermann M. et al. 2003. Covalent and selective immobilization of fusion proteins JACS . 125, PubMedID: 12822993, DOI:
  78. George N. et al. 2004. Specific labeling of cell surface proteins with chemically diverse compounds J .Am. Chem. Soc.  . 126, PubMedID: 15264811, DOI:
  79. La Clair, J.J. et al. 2004. Manipulation of carrier proteins in antibiotic biosynthesis Chem. Biol. . 11, PubMedID: 15123281, DOI:
  80. Huber W. et al. 2004. SPR-based interaction studies with small molecular weight ligands using hAGT fusion proteins Anal. Biochem. . 333, PubMedID: 15450803, DOI:
  81. Sielaff I. et al. 2006. Protein function microarrays based on self-immobilizing and self-labeling fusion proteins ChemBioChem.. 7, PubMedID: 16342318, DOI:
  82. Prummer M. et al. 2006. Post-translational covalent labeling reveals heterogeneous mobility of individual G protein-coupled receptors in living cells ChemBioChem . 7, PubMedID: 16607667, DOI:
  83. Jacquier V. et al. 2006. Visualizing receptor trafficking in living PNAS . 103, PubMedID: 16980412, DOI:
  84. Jongsma M.A., Litjens R. H. 2006. Self-assembling protein arrays on DNA chips by auto-labeling fusion proteins with a single DNA address  Proteomics . 6, PubMedID: 16596705, DOI:
  85. Meyer B.H. et al. 2006. Covalent labeling of cell-surface proteins for in vivo FRET studies FEBS Letters . 580, PubMedID: 16497304, DOI:
  86. Meyer B.H. et al. 2006. FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells Proc. Natl. Acad. Sci. USA . 103, PubMedID: 16461466, DOI:
  87. Tugulu S. et al. 2005. Protein-functionalized polymer brushes Biomacromolecules . 6, PubMedID: 15877383, DOI:
  88. Cravatt B.F. 2005. Live chemical reports from the cell surface Chem. Biol. . 12, PubMedID: 16183017, DOI:
  89. Vivero-Pol L. et al. 2005. Multicolor imaging of cell surface proteins J. Am. Chem. Soc. . 127, PubMedID: 16159249, DOI:
  90. Yin J. et al. 2005. Single-cell FRET imaging of transferrin receptor trafficking dynamics by Sfp-catalyzed, site-specific protein labeling Chem. Biol . 12, PubMedID: 16183024, DOI:
  91. Yin J. et al. 2005. Labeling proteins with small molecules by site-specific posttranslational modification J Am Chem Soc. 126 , PubMedID: 15212504, DOI:
  92. Kufer S.K. et al. 2005. Covalent immobilization of recombinant fusion proteins with hAGT for single molecule force spectroscopy Eur. Biophys. J . 35, PubMedID: 16160825, DOI:
  93. Mosiewicz, K. A. et al. 2010. Phosphopantetheinyl Transferase-Catalyzed Formation of Bioactive Hydrogels for Tissue Engineering J. Am. Chem. Soc. . 132, PubMedID: 20373804, DOI:
  94. Engin S. et al. 2010. Benzylguanine Thiol self-assembled monolayers for the immobilization of SNAP-tag proteins on microcontact-printed surface structures Langmuir . ASAP, PubMedID: 20369837, DOI:
  95. Waichman S. et al. 2010. Functional Immobilization and Patterning of Proteins by an Enzymatic Transfer Reaction Anal. Chem. . 82 , PubMedID: 20092261, DOI:
  96. Zelman-Femiak, M. et al. 2010. Covalent quantum dot receptor linkage via the acyl carrier protein for single-molecule tracking, internalization, and trafficking studies BioTechniques . 49, PubMedID: 20701592, DOI:
  97. Liu E and Bruner S. D. 2007. Rational manipulation of carrier-domain geometry in nonribosomal peptide synthetases ChemBioChem. . 8, PubMedID: 17335097, DOI:
  98. Zhou Z. et al. 2007. Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases ACS Chemical Biology . 2, PubMedID: 17465518, DOI:
  99. Gautier A. et al. 2009. Selective cross-linking of interacting proteins using self-labeling tags J. Am. Chem. Soc. . 131, PubMedID: 19916541, DOI:
  100. Gralle M. et al. 2009. Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers J. Biol. Chem. . 284, PubMedID: 19336403, DOI:
  101. Neugart F. et al. 2009. Detection of ligand-induced CNTF receptor dimers in living cells by fluorescence cross correlation spectroscopy Biochim. Biophys. Acta.  .  1788 , PubMedID: 19482006, DOI:
  102. Eggeling C. et al. 2009. Direct observation of the nanoscale dynamics of membrane lipids in a living cell Nature . 457 , PubMedID: 19098897, DOI:
  103. Generosi J. et al. 2008. Photobleaching-free infrared near-field microscopy localizes molecules in neurons J. App. Phys. . 104, PubMedID: , DOI:
  104. Schulz C. and Köhn M. 2008. Simultaneous protein tagging in two colors Chemistry & Biology . 15, PubMedID: 18291310, DOI:
  105. Iversen L. et al. 2008. Templated protein assembly on micro-contact-printed surface patterns. Use of the SNAP-tag protein functionality  Langumuir. May 17, PubMedID: 18484753, DOI:
  106. Kropf M. et al. 2008. Subunit-specific surface mobility of differentially labeled AMPA receptor subunits Eur. J. Cell Biol. . 87, PubMedID: 18547676, DOI:
  107. Gautier A. et al. 2008. An engineered protein tag for multiprotein labeling in living cells Chemistry & Biology . 15, PubMedID: 18291317, DOI:
  108. Generosi J. et al. 2008. AMPA receptor imaging by infrared scanning near-field optical microscopy Physica Status Solidi C: Current Topics in Solid State Physics . 5, PubMedID: , DOI:
  109. Sunbul M. et al. 2008. Enzyme catalyzed site-specific protein labeling and cell imaging with quantum dots Chem. Comm. . , PubMedID: 19030541, DOI:

Applications

  • Simultaneous dual protein labeling inside live cells
  • Protein localization and translocation
  • Pulse-chase experiments
  • Receptor internalization studies
  • Selective cell surface labeling
  • Protein pull-down assays
  • Protein detection in SDS-PAGE
  • Flow cytometry
  • High throughput binding assays in microtiter plates
  • Biosensor interaction experiments
  • FRET-based binding assays
  • Single molecule labeling
  • Super-resolution microscopy

Selected Publications by Application

Reviews:

Lukinavičius, G. et al. (2015) "Fluorescent labeling of SNAP-tagged proteins in cells" Methods Mol. Biol. 1266, 107-118.
Corrêa Jr., I. R. (2015) "Considerations and protocols for the synthesis of custom protein labeling probes" Methods Mol. Biol. 1266, 55-79.
Corrêa Jr., I. R. (2014) "Live-cell reporters for fluorescence imaging" Curr. Opin. Chem. Biol. 20, 36-45.

Single-Molecule Imaging
:

Bosch, P. J. et al. (2014) "Evaluation of fluorophores to label SNAP-tag fused proteins for multicolor single-molecule tracking microscopy in live cells" Biophys. J. 107, 803-814.
Smith, B. A. et al. (2013) "Three-color single molecule imaging shows WASP detachment from Arp2/3 complex triggers actin filament branch formation" eLife 2, e01008.
Jaiswal, R. et al. (2013) "The Formin Daam1 and Fascin Directly Collaborate to Promote Filopodia Formation" Curr. Biol. 23, 1373-1379.
Breitsprecher, D. et al. (2012) "Rocket Launcher Mechanism of Collaborative Actin Assembly Defined by Single-Molecule Imaging" Science 336, 1164-1168.
Hoskins, A. A. et al. (2011) "Ordered and dynamic assembly of single spliceosomes." Science 331 (6022), 1289-1295.

Super-Resolution Imaging
:

Zhao, Z. W. et al. (2014) "Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy" Proc. Natl. Acad. Sci. USA 111, 681-686.
Lukinavičius, G. et al. (2013) "A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins" Nat. Chem. 5, 132-139.
Jones, S. A. et al. (2011) "Fast, three-dimensional super-resolution imaging of live cells." Nat. Methods 8, 499-505.
Klein, T. et al. (2011) "Live-cell dSTORM with SNAP-tag fusion proteins." Nat. Methods 8, 7-9.
Pellett, P. A. et al. (2011) "Two-color STED microscopy in living cells." Biomed. Opt. Expr. 2, 2364-2371
Hein, B. et al. (2010) "Stimulated Emission Depletion Nanoscopy of Living Cells Using SNAP-Tag Fusion Proteins." Biophys. J. 98, 158-163.

Tissue and Animal Imaging:

Yang, G. et al. (2015) "Genetic targeting of chemical indicators in vivo" Nat. Methods 12, 137-139.
Kohl, J. et al. (2014) "Ultrafast tissue staining with chemical tags" Proc. Natl. Acad. Sci. USA 111, E3805-E3814.
Ivanova, A. et al. (2013) "Age-dependent labeling and imaging of insulin secretory granules" Diabetes 62, 3687-3696.
Gong, H. et al. (2012) "Near-Infrared Fluorescence Imaging of Mammalian Cells and Xenograft Tumors with SNAP-Tag" PLoS ONE 7(3): e34003.
Bojkowska K. et al. (2011) "Measuring in vivo protein half-life." Chem. Biol. 18, 805-815.

Cell-Surface Protein Labeling and Internalization Analysis:

Bitsikas, V. et al. (2014) "Clathrin-independent pathways do not contribute significantly to endocytic flux" eLife 3, e03970.
Jaensch, N. et al. (2014) "Stable Cell Surface Expression of GPI-Anchored Proteins, but not Intracellular Transport, Depends on their Fatty Acid Structure" Traffic 15, 1305-1329.
Cole, N. B. and Donaldson, J. G. (2012) "Releasable SNAP-tag Probes for Studying Endocytosis and Recycling" ACS Chem. Biol. 7, 464-469.

Pulse-Chase Analysis:

Rošić, S. et al. (2014) "Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division" J. Cell Biol. 207, 335-349.
Stoops, E. H. et al. (2014) "SNAP-Tag to Monitor Trafficking of Membrane Proteins in Polarized Epithelial Cells" Methods Mol. Biol. 1174, 171-182.
Bordor, D. L. et al. (2012) "Analysis of Protein Turnover by Quantitative SNAP-Based Pulse-Chase Imaging" Curr. Protoc. Cell Biol. 55, 8.8.1-8.8.34.

Pull-Down Studies:


Register, A. C. et al. (2014) "SH2-Catalytic Domain Linker Heterogeneity Influences Allosteric Coupling across the SFK Family" Biochemistry 53, 6910-6923.
Shi, G. et al. (2012) "SNAP-tag based proteomics approach for the study of the retrograde route" Traffic 13, 914-925.
Bieling, P. et al. (2010) "A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps" Cell 142, 420-432.

Protein-Protein and Protein-Ligand Interactions:

Griss, R. et al. (2014) "Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring" Nat. Chem. Biol. 10, 598-603.
Chidley, C. et al. (2011) "A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis." Nat. Chem. Biol. 7, 375-383.
Gautier A. et al. (2009) "Selective Cross-Linking of Interacting Proteins using Self-Labeling Tags" J. Am. Chem. Soc. 131, 17954-17962.
Maurel D. et al. (2008) "Cell-surface protein-protein interaction analysis with time-resolved FRET and SNAP-tag technologies: application to GPCR oligomerization." Nat. Methods 5, 561-567.

Features

  • Clone and express once, then use with a variety of substrates
  • Non-toxic to living cells
  • Wide selection of fluorescent substrates
  • Highly specific covalent labeling
  • Simultaneous dual labeling

Protein Labeling with SNAP-tag and CLIP-tag

The SNAP- (gold) or CLIP-tag (purple) is fused to the protein of interest (blue). Labeling occurs through covalent attachment to the tag, releasing either a guanine or a cytosine moiety.

SNAP-tag®, CLIP-tag™ and ACP/MCP-tag Substrate Selection Chart

 
NEB offers a large selection of fluorescent labels (substrates) for SNAP-, CLIP-, ACP- and MCP-tag fusion proteins.

Legal Information

This product is covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc (NEB).

While NEB develops and validates its products for various applications, the use of this product may require the buyer to obtain additional third party intellectual property rights for certain applications.

For more information about commercial rights, please contact NEB's Global Business Development team at gbd@neb.com.

This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.

  1. $name

    Fluorescent Labeling of COS-7 Expressing SNAP-tag Fusion Proteins for Live Cell Imaging

    Watch as Chris Provost, of New England Biolabs, performs fluorescent imaging of live COS-7 cells expressing SNAP-tag® fusion proteins.

  2. $name

    SNAP-tag Overview Tutorial

    View an interactive tutorial explaining the mechanism of our SNAP-tag® technologies and reagents available for researchers wishing to study the function and localization of proteins in live or fixed cells.